![[file-MWdZuFXMl6lx567pMMh5RtTy]] ## Python-Code ```python import matplotlib.pyplot as plt import networkx as nx # Define the Markov Decision Process (MDP) states and transitions states = [ "Schmerzevaluation", "Medikationsentscheidung Esketamin", "Medikationsentscheidung Fentanyl", "Weitere Diagnostik", "Reevaluation", "Ende" ] edges = [ ("Schmerzevaluation", "Medikationsentscheidung Esketamin"), ("Schmerzevaluation", "Ende"), ("Medikationsentscheidung Esketamin", "Reevaluation"), ("Medikationsentscheidung Fentanyl", "Reevaluation"), ("Reevaluation", "Medikationsentscheidung Esketamin"), ("Reevaluation", "Medikationsentscheidung Fentanyl"), ("Reevaluation", "Weitere Diagnostik"), ("Reevaluation", "Ende"), ("Weitere Diagnostik", "Reevaluation") ] # Create directed graph G = nx.DiGraph() G.add_nodes_from(states) G.add_edges_from(edges) # Position nodes for better visualization pos = { "Schmerzevaluation": (0, 1), "Medikationsentscheidung Esketamin": (-1, 0), "Medikationsentscheidung Fentanyl": (1, 0), "Weitere Diagnostik": (2, 0), "Reevaluation": (0, -1), "Ende": (0, -2) } # Draw the graph plt.figure(figsize=(10, 8)) nx.draw(G, pos, with_labels=True, node_size=4000, node_color='skyblue', font_size=9, font_weight='bold', arrowstyle='-|>', arrowsize=20) plt.title('MDP Übergangsdiagramm für Schmerzbehandlungsalgorithmus') plt.show() ```