Netzwerkanalyse: Visualisierung der Relevanz
This commit is contained in:
@ -59,6 +59,9 @@ from config_netzwerk import (
|
||||
export_fig_visualize_sources_status,
|
||||
export_fig_create_wordcloud_from_titles,
|
||||
export_fig_visualize_languages,
|
||||
export_fig_visualize_relevance_fu,
|
||||
export_fig_visualize_relevance_categories,
|
||||
export_fig_visualize_relevance_search_terms,
|
||||
)
|
||||
|
||||
from config_netzwerk import export_fig_png
|
||||
@ -99,6 +102,23 @@ word_colors = [
|
||||
colors["negativeHighlight"]
|
||||
]
|
||||
|
||||
# Relevanz-Stufen (1 = gering, 5 = sehr hoch)
|
||||
RELEVANCE_LEVELS = [5, 4, 3, 2, 1]
|
||||
RELEVANCE_LEVEL_LABELS = {
|
||||
5: "Relevanz 5",
|
||||
4: "Relevanz 4",
|
||||
3: "Relevanz 3",
|
||||
2: "Relevanz 2",
|
||||
1: "Relevanz 1",
|
||||
}
|
||||
RELEVANCE_COLOR_MAP = {
|
||||
"Relevanz 5": colors['positiveHighlight'],
|
||||
"Relevanz 4": colors['accent'],
|
||||
"Relevanz 3": colors['brightArea'],
|
||||
"Relevanz 2": colors['depthArea'],
|
||||
"Relevanz 1": colors['negativeHighlight'],
|
||||
}
|
||||
|
||||
# Aktuelles Datum
|
||||
current_date = datetime.now().strftime("%Y-%m-%d")
|
||||
|
||||
@ -119,6 +139,13 @@ with open('en_complete.txt', 'r', encoding='utf-8') as file:
|
||||
# Kombinierte Stoppliste
|
||||
stop_words = stop_words_de.union(stop_words_en)
|
||||
|
||||
# Hilfsfunktion: Relevanzstufe aus Keywords extrahieren
|
||||
def extract_relevance_level(entry_keywords):
|
||||
for level in RELEVANCE_LEVELS:
|
||||
if f'promotion:relevanz:{level}' in entry_keywords:
|
||||
return level
|
||||
return None
|
||||
|
||||
# Funktion zur Berechnung der Stichprobengröße
|
||||
def calculate_sample_size(N, Z=1.96, p=0.5, e=0.05):
|
||||
n_0 = (Z**2 * p * (1 - p)) / (e**2)
|
||||
@ -596,6 +623,160 @@ def visualize_categories(bib_database):
|
||||
fig.show(config={"responsive": True})
|
||||
export_figure_local(fig, "visualize_categories", export_fig_visualize_categories)
|
||||
|
||||
# Relevanz-Auswertungen
|
||||
def build_relevance_distribution(bib_database, tag_to_label):
|
||||
records = []
|
||||
|
||||
for entry in bib_database.entries:
|
||||
keywords_raw = entry.get('keywords', '')
|
||||
if not keywords_raw:
|
||||
continue
|
||||
|
||||
entry_keywords = set(map(str.lower, map(str.strip, keywords_raw.replace('\\#', '#').split(','))))
|
||||
relevance_level = extract_relevance_level(entry_keywords)
|
||||
if relevance_level is None:
|
||||
continue
|
||||
|
||||
for tag, label in tag_to_label.items():
|
||||
if tag in entry_keywords:
|
||||
records.append({
|
||||
'Kategorie': label,
|
||||
'Relevanzstufe': RELEVANCE_LEVEL_LABELS[relevance_level]
|
||||
})
|
||||
|
||||
if not records:
|
||||
return pd.DataFrame()
|
||||
|
||||
df = pd.DataFrame(records)
|
||||
df = (
|
||||
df.groupby(['Kategorie', 'Relevanzstufe'])
|
||||
.size()
|
||||
.reset_index(name='Count')
|
||||
)
|
||||
df['Relevanzstufe'] = pd.Categorical(
|
||||
df['Relevanzstufe'],
|
||||
categories=[RELEVANCE_LEVEL_LABELS[level] for level in RELEVANCE_LEVELS],
|
||||
ordered=True
|
||||
)
|
||||
return df.sort_values(['Kategorie', 'Relevanzstufe'])
|
||||
|
||||
|
||||
def plot_relevance_distribution(df, title, x_title, export_flag, filename):
|
||||
if df.empty:
|
||||
print(f"⚠️ Keine Relevanzdaten verfügbar für: {title}")
|
||||
return
|
||||
|
||||
total_count = df['Count'].sum()
|
||||
fig = px.bar(
|
||||
df,
|
||||
x='Kategorie',
|
||||
y='Count',
|
||||
color='Relevanzstufe',
|
||||
color_discrete_map=RELEVANCE_COLOR_MAP,
|
||||
category_orders={'Relevanzstufe': [RELEVANCE_LEVEL_LABELS[level] for level in RELEVANCE_LEVELS]},
|
||||
title=f"{title} (n={total_count}, Stand: {current_date})",
|
||||
labels={'Kategorie': x_title, 'Count': 'Anzahl', 'Relevanzstufe': 'Relevanzstufe'},
|
||||
)
|
||||
|
||||
layout = get_standard_layout(
|
||||
title=fig.layout.title.text,
|
||||
x_title=x_title,
|
||||
y_title='Anzahl'
|
||||
)
|
||||
layout['barmode'] = 'stack'
|
||||
layout['font'] = {"size": 14, "color": colors['text']}
|
||||
layout['title'] = {"font": {"size": 16}}
|
||||
layout['margin'] = dict(b=160, t=60, l=40, r=40)
|
||||
layout['xaxis'] = layout.get('xaxis', {})
|
||||
layout['xaxis']['tickangle'] = -45
|
||||
layout['xaxis']['automargin'] = True
|
||||
layout['autosize'] = True
|
||||
fig.update_layout(**layout)
|
||||
|
||||
fig.show(config={"responsive": True})
|
||||
export_figure_local(fig, filename, export_flag)
|
||||
|
||||
|
||||
def visualize_relevance_vs_research_questions(bib_database):
|
||||
research_questions = {
|
||||
'promotion:fu1': 'Akzeptanz und Nützlichkeit (FU1)',
|
||||
'promotion:fu2a': 'Effekt für Lernende (FU2a)',
|
||||
'promotion:fu2b': 'Effekt-Faktoren für Lehrende (FU2b)',
|
||||
'promotion:fu3': 'Konzeption und Merkmale (FU3)',
|
||||
'promotion:fu4a': 'Bildungswissenschaftliche Mechanismen (FU4a)',
|
||||
'promotion:fu4b': 'Technisch-gestalterische Mechanismen (FU4b)',
|
||||
'promotion:fu5': 'Möglichkeiten und Grenzen (FU5)',
|
||||
'promotion:fu6': 'Beurteilung als Kompetenzerwerbssystem (FU6)',
|
||||
'promotion:fu7': 'Inputs und Strategien (FU7)'
|
||||
}
|
||||
tag_to_label = {key.lower(): value for key, value in research_questions.items()}
|
||||
df = build_relevance_distribution(bib_database, tag_to_label)
|
||||
plot_relevance_distribution(
|
||||
df,
|
||||
"Relevanzverteilung nach Forschungsunterfragen",
|
||||
"Forschungsunterfragen",
|
||||
export_fig_visualize_relevance_fu,
|
||||
"visualize_relevance_fu"
|
||||
)
|
||||
|
||||
|
||||
def visualize_relevance_vs_categories(bib_database):
|
||||
categories = {
|
||||
'promotion:argumentation': 'Argumentation',
|
||||
'promotion:kerngedanke': 'Kerngedanke',
|
||||
'promotion:weiterführung': 'Weiterführung',
|
||||
'promotion:schlussfolgerung': 'Schlussfolgerung'
|
||||
}
|
||||
tag_to_label = {key.lower(): value for key, value in categories.items()}
|
||||
df = build_relevance_distribution(bib_database, tag_to_label)
|
||||
plot_relevance_distribution(
|
||||
df,
|
||||
"Relevanzverteilung nach Kategorien",
|
||||
"Kategorien",
|
||||
export_fig_visualize_relevance_categories,
|
||||
"visualize_relevance_categories"
|
||||
)
|
||||
|
||||
|
||||
def visualize_relevance_vs_search_terms(bib_database):
|
||||
search_terms = {
|
||||
'0': 'digital:learning',
|
||||
'1': 'learning:management:system',
|
||||
'2': 'online:lernplattform',
|
||||
'3': 'online:lernumgebung',
|
||||
'4': 'mooc',
|
||||
'5': 'e-learning',
|
||||
'6': 'bildung:technologie',
|
||||
'7': 'digital:medien',
|
||||
'8': 'blended:learning',
|
||||
'9': 'digital:lernen',
|
||||
'a': 'online:lernen',
|
||||
'b': 'online:learning'
|
||||
}
|
||||
types = [
|
||||
'Zeitschriftenartikel',
|
||||
'Buch',
|
||||
'Buchteil',
|
||||
'Bericht',
|
||||
'Konferenz-Paper',
|
||||
'Studienbrief'
|
||||
]
|
||||
|
||||
tag_to_label = {}
|
||||
for number, term in search_terms.items():
|
||||
for type_ in types:
|
||||
tag = f'#{number}:{type_}:{term}'.lower()
|
||||
tag_to_label[tag] = f"#{number}:{term}"
|
||||
|
||||
df = build_relevance_distribution(bib_database, tag_to_label)
|
||||
plot_relevance_distribution(
|
||||
df,
|
||||
"Relevanzverteilung nach Suchbegriffen",
|
||||
"Suchbegriffe",
|
||||
export_fig_visualize_relevance_search_terms,
|
||||
"visualize_relevance_search_terms"
|
||||
)
|
||||
|
||||
# Zeitreihenanalyse der Veröffentlichungen
|
||||
def visualize_time_series(bib_database):
|
||||
publication_years = []
|
||||
@ -1324,6 +1505,9 @@ visualize_tags(bib_database)
|
||||
visualize_index(bib_database)
|
||||
visualize_research_questions(bib_database)
|
||||
visualize_categories(bib_database)
|
||||
visualize_relevance_vs_research_questions(bib_database)
|
||||
visualize_relevance_vs_categories(bib_database)
|
||||
visualize_relevance_vs_search_terms(bib_database)
|
||||
visualize_time_series(bib_database)
|
||||
visualize_top_authors(bib_database)
|
||||
data = prepare_path_data(bib_database)
|
||||
|
||||
Reference in New Issue
Block a user