This commit is contained in:
2025-05-11 14:55:15 +02:00
parent 382a252e0f
commit c60d7789e3
4 changed files with 1640 additions and 0 deletions

View File

80
Geovisualization Normal file
View File

@ -0,0 +1,80 @@
import os
import pandas as pd
import bibtexparser
import folium
from concurrent.futures import ThreadPoolExecutor
from tqdm import tqdm
# Clear the terminal
os.system('cls' if os.name == 'nt' else 'clear')
# Pfade zu den Dateien
geonames_file_path = 'allCountries.txt'
bib_file_path = 'Research/Charité - Universitätsmedizin Berlin/Systematische Literaturrecherche/Literaturverzeichnis.bib'
cleaned_bib_file_path = 'Research/Charité - Universitätsmedizin Berlin/Systematische Literaturrecherche/cleaned_Literaturverzeichnis.bib'
# Spaltennamen laut Geonames README
columns = [
'geonameid', 'name', 'asciiname', 'alternatenames', 'latitude', 'longitude',
'feature class', 'feature code', 'country code', 'cc2', 'admin1 code',
'admin2 code', 'admin3 code', 'admin4 code', 'population', 'elevation', 'dem',
'timezone', 'modification date'
]
# GeoNames-Daten laden
print("Lade GeoNames-Daten...")
geo_df = pd.read_csv(geonames_file_path, sep='\t', header=None, names=columns, usecols=['name', 'asciiname', 'latitude', 'longitude'])
geo_df.dropna(subset=['latitude', 'longitude'], inplace=True)
print("GeoNames-Daten geladen.")
# BibTeX-Datei laden
print("Lade BibTeX-Datei...")
with open(bib_file_path, encoding='utf-8') as bibtex_file:
bib_database = bibtexparser.load(bibtex_file)
print("BibTeX-Datei geladen.")
# Ortsnamen extrahieren und bereinigen
print("Extrahiere und bereinige Ortsnamen...")
locations = set()
for entry in bib_database.entries:
if 'address' in entry:
for loc in entry['address'].split(';'):
locations.update(loc.split(','))
cleaned_locations = {loc.strip() for loc in locations}
print("Ortsnamen extrahiert und bereinigt.")
# Geo-Koordinaten zuordnen
def find_coordinates(location):
match = geo_df[(geo_df['name'].str.lower() == location.lower()) | (geo_df['asciiname'].str.lower() == location.lower())]
if not match.empty:
return match.iloc[0]['latitude'], match.iloc[0]['longitude']
return None, None
print("Suche Geo-Koordinaten...")
location_coords = {}
for location in tqdm(cleaned_locations, desc="Bearbeitung der Ortsnamen"):
latitude, longitude = find_coordinates(location)
if latitude is not None and longitude is not None:
location_coords[location] = (latitude, longitude)
print("Geo-Koordinaten gefunden.")
# Erstelle die Karte
print("Erstelle Karte...")
map_center = [geo_df['latitude'].mean(), geo_df['longitude'].mean()]
map = folium.Map(location=map_center, zoom_start=2)
for location, coords in location_coords.items():
folium.Marker(location=coords, popup=location).add_to(map)
map_file_path = 'Research/Charité - Universitätsmedizin Berlin/Systematische Literaturrecherche/literature_map.html'
map.save(map_file_path)
print(f"Karte gespeichert unter {map_file_path}")
# Bereinigen und Speichern der BibTeX-Datei
print("Speichere bereinigte BibTeX-Datei...")
with open(cleaned_bib_file_path, 'w', encoding='utf-8') as bibtex_file:
bibtexparser.dump(bib_database, bibtex_file)
print(f"Bereinigte BibTeX-Datei gespeichert unter {cleaned_bib_file_path}")

78
Geovisualization copy.py Normal file
View File

@ -0,0 +1,78 @@
import os
import bibtexparser
import pandas as pd
from tqdm import tqdm
import folium
from folium.plugins import Fullscreen
# Terminal bereinigen
os.system('cls' if os.name == 'nt' else 'clear')
# Dateipfade
geonames_file = 'allCountries.txt'
bib_file = 'Research/Charité - Universitätsmedizin Berlin/Systematische Literaturrecherche/Literaturverzeichnis.bib'
# Laden der GeoNames-Daten
print("Laden der GeoNames-Daten...")
geonames_columns = [
'geonameid', 'name', 'asciiname', 'alternatenames', 'latitude',
'longitude', 'feature class', 'feature code', 'country code', 'cc2',
'admin1 code', 'admin2 code', 'admin3 code', 'admin4 code', 'population',
'elevation', 'dem', 'timezone', 'modification date'
]
chunksize = 10**6
geonames_data = pd.DataFrame()
for chunk in tqdm(pd.read_csv(geonames_file, sep='\t', header=None, names=geonames_columns, chunksize=chunksize, dtype=str, encoding='utf-8')):
geonames_data = pd.concat([geonames_data, chunk], ignore_index=True)
# Laden der BibTeX-Daten
print("Laden der BibTeX-Daten...")
with open(bib_file, encoding='utf-8') as bibtex_file:
bib_database = bibtexparser.load(bibtex_file)
# Ortsnamen extrahieren und bereinigen
print("Extrahieren und Bereinigen der Ortsnamen...")
locations = set()
for entry in bib_database.entries:
if 'address' in entry:
locations.update(entry['address'].replace(';', ',').replace('&', 'and').split(','))
locations = {loc.strip() for loc in locations}
print(f"Bereinigte Ortsnamen: {locations}")
# Geo-Koordinaten zuordnen
print("Zuordnen der Geo-Koordinaten...")
geo_data = []
for location in tqdm(locations):
matching_rows = geonames_data[geonames_data['name'].str.contains(location, case=False, na=False)]
if not matching_rows.empty:
best_match = matching_rows.iloc[0]
geo_data.append({
'name': location,
'latitude': best_match['latitude'],
'longitude': best_match['longitude']
})
if not geo_data:
print("Keine gültigen Koordinaten gefunden.")
else:
df = pd.DataFrame(geo_data)
# Karte erstellen
print("Erstellen der Karte...")
m = folium.Map(location=[0, 0], zoom_start=2)
for _, row in df.iterrows():
folium.Marker(
location=[row['latitude'], row['longitude']],
popup=row['name']
).add_to(m)
# Vollbildmodus und LayerControl hinzufügen
Fullscreen(position='topright').add_to(m)
folium.LayerControl().add_to(m)
# Karte speichern
m.save('literature_map_with_zoom.html')
print("Karte wurde gespeichert als 'literature_map_with_zoom.html'.")

File diff suppressed because it is too large Load Diff