Korrelation: Farbanpassung und Konsistenzprüfung
This commit is contained in:
@ -491,11 +491,6 @@ df['X_Dimension'] = df[[tag for tag in tags_to_search_processed if tag in df.col
|
||||
df['Y_Dimension'] = df[[cat for cat in categories_processed if cat in df.columns]].sum(axis=1)
|
||||
df['Z_Dimension'] = df[[rq for rq in research_questions_processed if rq in df.columns]].sum(axis=1)
|
||||
|
||||
# Clusteranalyse mit K-Means basierend auf den deduktiven Dimensionen
|
||||
features = df[['X_Dimension', 'Y_Dimension', 'Z_Dimension']]
|
||||
scaler = StandardScaler()
|
||||
scaled_features = scaler.fit_transform(features)
|
||||
|
||||
# Clusteranalyse mit K-Means basierend auf den deduktiven Dimensionen
|
||||
# Prüfung auf konstante deduktive Dimensionen
|
||||
if df[['X_Dimension', 'Y_Dimension', 'Z_Dimension']].nunique().eq(1).all():
|
||||
@ -568,6 +563,19 @@ for cluster in cluster_means.index:
|
||||
|
||||
# Statische Cluster-Beschriftungen in den DataFrame einfügen
|
||||
df['Cluster_Label'] = df['KMeans_Cluster'].map(cluster_labels)
|
||||
df['Cluster_Label'] = df['Cluster_Label'].fillna(df['KMeans_Cluster'])
|
||||
|
||||
# Farbzuordnung für die Clusterlabels aus den CI-Farben ableiten
|
||||
fallback_color = cluster_colors.get("0", colors.get('primaryLine', '#1f77b4'))
|
||||
color_map = {}
|
||||
for cluster_key, label in cluster_labels.items():
|
||||
base_color = cluster_colors.get(str(cluster_key), fallback_color)
|
||||
color_map[label] = base_color
|
||||
|
||||
# Sicherstellen, dass auch eventuelle Restlabels (z.B. "Nicht gültig") erfasst werden
|
||||
for label in df['Cluster_Label'].dropna().unique():
|
||||
if label not in color_map:
|
||||
color_map[label] = cluster_colors.get(str(label), fallback_color)
|
||||
|
||||
# Ausgabe der statischen Cluster-Beschriftungen
|
||||
print("Cluster-Beschriftungen (inhaltlich):")
|
||||
@ -584,7 +592,7 @@ fig_cluster = px.scatter_3d(
|
||||
color='Cluster_Label',
|
||||
size='Point_Size',
|
||||
size_max=100,
|
||||
color_discrete_sequence=list(cluster_colors.values()),
|
||||
color_discrete_map=color_map,
|
||||
hover_data={
|
||||
'Cluster_Label': True,
|
||||
'X_Dimension': True,
|
||||
@ -753,8 +761,17 @@ def plot_average_correlation_plotly(summary_df):
|
||||
)
|
||||
# PNG-Export ergänzen
|
||||
png_path = os.path.join(export_path_png, f"{slugify('summary_plot_' + global_bib_filename.replace('.bib', ''))}.png")
|
||||
fig.write_image(png_path, width=1200, height=800, scale=2)
|
||||
print(f"✅ PNG-Summary-Datei gespeichert unter: {png_path}")
|
||||
try:
|
||||
fig.write_image(png_path, width=1200, height=800, scale=2)
|
||||
print(f"✅ PNG-Summary-Datei gespeichert unter: {png_path}")
|
||||
except ValueError as err:
|
||||
if "kaleido" in str(err).lower():
|
||||
print("⚠️ PNG-Export übersprungen: Plotly benötigt das Paket 'kaleido'.")
|
||||
print(" Installation (falls gewünscht): pip install -U kaleido")
|
||||
else:
|
||||
print(f"⚠️ PNG-Export fehlgeschlagen: {err}")
|
||||
except Exception as err:
|
||||
print(f"⚠️ PNG-Export fehlgeschlagen: {err}")
|
||||
|
||||
#============================
|
||||
# Aufruf Alle möglichen bivariaten Korrelationen visualisieren
|
||||
|
||||
@ -166,13 +166,6 @@ def visualize_network(bib_database):
|
||||
if tag in keyword:
|
||||
tag_counts[tag] += 1
|
||||
|
||||
fundzahlen = defaultdict(int)
|
||||
for tag, count in tag_counts.items():
|
||||
search_term = tag.split(':')[-1]
|
||||
for key, value in search_terms.items():
|
||||
if search_term == value:
|
||||
fundzahlen[value] += count
|
||||
|
||||
search_terms_network = {
|
||||
"Primäre Begriffe": {
|
||||
"learning:management:system": [
|
||||
@ -181,7 +174,7 @@ def visualize_network(bib_database):
|
||||
"online:lernplattform",
|
||||
"online:lernumgebung",
|
||||
"digital:learning",
|
||||
"digitales:lernen"
|
||||
"digital:lernen"
|
||||
]
|
||||
},
|
||||
"Sekundäre Begriffe": {
|
||||
@ -191,15 +184,15 @@ def visualize_network(bib_database):
|
||||
],
|
||||
"bildung:technologie": [
|
||||
"digital:learning",
|
||||
"digitales:lernen",
|
||||
"digital:lernen",
|
||||
"blended:learning"
|
||||
],
|
||||
"digital:learning": [
|
||||
"digitale:medien",
|
||||
"digital:medien",
|
||||
"online:learning"
|
||||
],
|
||||
"digitales:lernen": [
|
||||
"digitale:medien",
|
||||
"digital:lernen": [
|
||||
"digital:medien",
|
||||
"online:lernen"
|
||||
],
|
||||
"blended:learning": ["mooc"]
|
||||
@ -210,6 +203,14 @@ def visualize_network(bib_database):
|
||||
}
|
||||
}
|
||||
|
||||
# Fundzählung exakt entlang der search_terms-Definition
|
||||
fundzahlen = defaultdict(int)
|
||||
|
||||
for number, suchbegriff in search_terms.items():
|
||||
for typ in types:
|
||||
tag = f'#{number}:{typ}:{suchbegriff}'.lower()
|
||||
fundzahlen[suchbegriff.lower()] += tag_counts.get(tag, 0)
|
||||
|
||||
G = nx.Graph()
|
||||
|
||||
hierarchy_colors = {
|
||||
|
||||
Reference in New Issue
Block a user